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Abstract. In this talk we introduce a Weierstrass-like system of equations corresponding to CP N−1 fields in

two dimensions. Then using this representation we introduce a vector � in RN2−1 and treating this vector

as the radius vector of a surface immersed in RN2−1 we discuss to what extent the associated metric
describes the geometry of the CP N−1 maps. We show that for the holomorphic maps – the correspondence
is exact; while for the more general fields we have to go beyond the Weierstrass system and add extra
terms.

PACS. 02.40.-K Geometry, differential geometry, and topology – 02.30.Jr Partial differential equations –
11.10.Lm Nonlinear or nonlocal theories and models

1 Introduction

In this talk I want to discuss two interesting ideas, and
then relate them to each other. Moreover, I will then show
how these ideas can be further generalised.

The work described in this talk has been done in col-
laboration with M. Grundland. The details of the work
will be given elsewhere [1].

1.1 Harmonic maps [2]

The first topic involves CP 1 harmonic maps.
These are maps

S2 → CP 1 ∼ S2 (1)

given by the stationary points of the energy

L =
∫
L dxdy, (2)

where

L =
1
4
(Dµz)† ·Dµz, (3)

and where, in the general case of CPN−1, z is a vector
field of N components, z = (z1, ..., zN), which satisfies

z† · z = 1. (4)

a Work done in collaboration with M. Grundland
e-mail: w.j.zakrzewski@durham.ac.uk

The differential operator Dµ acts on ψ: S2 → CPN−1

according to the formula:

Dµψ = ∂µψ − ψ (z† · ∂µz). (5)

Here µ = 1, 2, of course, and denotes the space coordinates
x and y. In the CP 1 case we can introduce a complex
field W

z =
(1,W )√
1 + |W |2 · (6)

Then, the Euler Lagrange equations describing harmonic
maps are given by

∂∂̄W − 2W̄
∂W∂̄W

|W |2 + 1
= 0 (7)

where W = W (ζ, ζ̄) and

∂ =
∂

∂(x+ iy)
=

∂

∂ζ
, ∂̄ =

∂

∂ζ̄
· (8)

1.2 Weierstrass system [3]

Here we consider 2 complex functions ψ = ψ(ζ, ζ̄) and
φ = φ(ζ, ζ̄), which satisfy

∂ ψ = p φ, ∂̄φ = −pψ, p = |φ|2 + |ψ|2. (9)

Note that we have not specified ∂̄ψ, nor ∂φ.
A natural question then arises. Are these two problems

related? Obviously the answer is YES. To see this put

W =
ψ

φ̄
(10)
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and

ψ = W
(∂̄W̄ )

1
2

1 + |W |2 , φ =
(∂W )

1
2

1 + |W |2 , (11)

and so find that (7) and (9) are equivalent.
Moreover, we can introduce 3 real quantities

X1 = i
∫

γ

[ψ̄2 + φ2]dζ − [ψ2 + φ̄2]dζ̄ ,

X2 =
∫

γ

[ψ̄2 − φ2]dζ + [ψ2 − φ̄2]dζ̄,

X3 = −2
∫

γ

ψ̄φdζ + ψφ̄dζ̄ , (12)

where γ is any curve from a fixed point to ζ.
Then, it is easy to show that if ψ and φ satisfy (9) then

Xi do not depend on the details of the curve γ but only
on its endpoints.

Furthermore, if we treat Xi as components of a vector
r = (X1, X2, X3) and introduce the metric

gζζ = (∂r, ∂r), gζ̄ζ̄ = (∂̄r, ∂̄r), gζζ̄ = (∂r, ∂̄r)
(13)

we find that, for fields which solve (7) on S2, only gζζ̄ is
non-zero and is given by

gζζ̄ =
|∂W |2

(1 + |W |2)2 = |Dz|2, (14)

where D denotes the Dµ derivative (5) but evaluated with
respect to ζ. Note that (14) is a term in the general ex-
pression for the energy of the CP 1 map. However, as all
harmonic maps on S2 satisfy W = W (ζ) [2], gζζ̄ is the
energy1.

Can we generalise this to CPN−1?

2 CPN�1 case

2.1 General considerations [2]

In the CPN−1 case we can put

zi =
fi

|f | i = 1, ...N, (15)

and introduce Wk = fk

f1
. The energy is still given by (3)

and the Euler Lagrange equations become
(

1 − ff †

|f |2
) [

∂∂̄f − ∂f
(f † · ∂̄f)

|f |2 − ∂̄f
(f † · ∂f)

|f |2
]

= 0.

(16)

1 We are assuming here that we are not dealing with anti-
holomorphic maps, as then gζζ̄ = 0; in this case we exchange
the roles of ζ and ζ̄.

Holomorphic solutions imply ∂̄f = 0 but, for N > 2 there
exist nonholomorphic solutions of (16).

To construct the generalised Weierstrass system we
note that (16) can be rewritten as

[∂∂̄P, P ] = 0 where P =
1
A
f f †, (17)

where A = f †f . Thus we have

∂K + ∂̄M = 0, with K = [∂̄P, P ], M = [∂P, P ]
(18)

The explicit form of matrices K and M is given by2

Kij =
1
A2

[f̄k fk ∂̄fi f̄j − f̄k fk fi ∂̄f̄j

+ fi f̄j ∂̄f̄k fk − fi f̄j f̄k ∂̄fk], (19)

Mij =
1
A2

[f̄k fk ∂fi f̄j − f̄k fk fi ∂f̄j

+ fi f̄j ∂f̄k fk − fi f̄j f̄k ∂fk], (20)

which we next rewrite as

Kij = f̄jΦ̄
2
i − fiϕ̄

2
j , Mij = f̄jϕ

2
i − fiΦ

2
j , (21)

where we have defined

ϕ2
i =

1
A2

f̄k Fki, Φ2
i =

1
A2

fk
¯̃Fki, (22)

and

Fij = fi ∂fj − fj∂fi, F̃ij = fi ∂̄fj − fj∂̄fi. (23)

Note that we have two constraints

f̄k ϕ
2
k = 0, fk Φ

2
k = 0, (24)

which allows us to consider as independent only ϕ2, ..ϕN .
At the same time, as we have said before, we can set, say,
f1 = 1 and so we end up with

ϕ2
i =

1
A2

[
(1 + fkf̄k) ∂ fi − fi(f̄k ∂fk)

]
, (25)

where all the sums over repeated indices run over k =
2, ...N .

Note that the CPN−1 system has more conserved
quantities. In fact, we can drop the Φ terms in the ex-
pressions for K and M in (21) and we still have our con-
servation laws; namely, we can define

K ′
ij = − fi ϕ̄

2
j , M ′

ij = ϕ2
i f̄j (26)

and then note that we still have

∂K ′ + ∂̄M ′ = 0. (27)

This is easy to check the validity of (27) by using (16).
2 We assume summation convention.
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2.2 Weierstrass system [1]

As our generalised Weierstrass variables we now take

ϕi and ψi = fiϕ̄i, i = 2, ...N. (28)

Then the generalised Weierstrass system is given by the
equations

∂̄ϕi = −ϕiA (ψ · ϕ̄), ∂ψi = ϕi A |ϕi|2 no summation,
(29)

where

A = 1 +
N∑

k=1

|ψk|2
|ϕk|2 · (30)

It can be shown that these equations are equivalent to
the CPN−1 equations (16) or (17).

Moreover, we can also construct N2−1 real quantities
Xi, which we can be treated as components of a vector r
in N2 − 1 dimensions.

To construct them we take various entries of our ma-
trices K ′ and M ′.

Explicitly, the diagonal terms give us (l = 1, ..., N no
summation)

Xll =
∫

γ

f̄lϕ
2
l dζ +

∫
γ

flϕ̄
2
l dζ̄ =

∫
γ

ψ̄lϕldζ +
∫

γ

ψlϕ̄ldζ̄

(31)

which satisfy
∑

l Xll = 0. The off-diagonal terms give us

Xlk =
1
2

[∫
γ

(
ψ̄l
ϕ2

k

ϕ̄l
+ψ̄k

ϕ2
l

ϕ̄k

)
dζ+

∫
γ

(
ψl
ϕ̄2

k

ϕl
+ψk

ϕ̄2
l

ϕk

)
dζ̄

]

(32)

Ylk =
i
2

[∫
γ

(
ψ̄l
ϕ2

k

ϕ̄l
−ψ̄k

ϕ2
l

ϕ̄k

)
dζ+

∫
γ

(
ψl
ϕ̄2

k

ϕl
−ψk

ϕ̄2
l

ϕk

)
dζ̄

]
.

(33)

In our expressions we take all l, k = 1, ..., N and for k = 1
and l = 1 we use our constraints to rewrite all our expres-
sions in terms of independent ϕi and ψi, i = 2, ..., N . As
in the CP 1 case there is no dependence on the contour of
integration except through its endpoints.

Moreover, when we calculate the metric – we find, like
before, that the only nonvanishing entry is

gζζ̄ = |Dz|2. (34)

On the other hand, if we go beyond the generalised
Weierstrass system and consider also Φ terms in K and
M and define our Xi variables in terms of these matrices
and not K ′ and M ′ we find that the metric now becomes

gζζ̄ = |Dz|2 + |D̄z|2 (35)

i.e. is the total energy.

3 Conclusions

We have generalised the observation that harmonic maps
of S2 to CP 1 and the Weierstrass system are related to
the case of maps into CPN−1 and of the corresponding
generalised Weierstrass system. There is a difference; in
the CP 1 case all harmonic maps are holomorphic (or an-
tiholomorphic); in the CPN−1 case, for N > 2, there are
maps which are neither holomorphic nor antiholomorphic.
Our generalised Weierstrass system misses out a part of
the energy. To have full energy we need to go beyond the
Weierstrass system and include also Φ variables.

It would be interesting to understand better how the
existence of non-holomorphic harmonic maps translates
into the properties of the Weierstrass system or its geom-
etry. This problem is currently under investigation.

I would like to thank R. Dandoloff and V. Gerdjikov for their
invitation to present this talk at GIN2001 in Bansko and all
the organisers of this meeting for their hospitality and making
the meeting very interesting and enjoyable. I would like to
thank A.M. Grundland for collaborating with me on the topics
discussed in this paper.
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